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Abstract

In this thesis I consider the automatic generation of hedcut style portraits using
photographs of faces. These renderings mimic those that appear in the Wall Street
Journal which are produced by hand with pen and ink. I begin this work by following
Kim et al. who render hedcuts by placing stipples so they follow not only the outline
of facial features but also isophotes (lines with constant illumination). I apply a
variety of image processing techniques to extract facial components and inform stipple
placement and size to illustrate tone and depth of the face. I then expand on the work
of Kim et al. by introducing an interactive tool that allows for a fully parameterizable
version of their approach. Finally I experiment with allowing for areas of negative
space and areas of stipple density variation. In this thesis I report on this tool and
assess the quality of these methods.





Introduction

Hedcuts, portraits crafted using stipples (tiny dots) and hatches (tiny lines), have
become a hallmark of the Wall Street Journal (WSJ) [6]. These portraits are small,
typically no wider than a column in a print newspaper, but creating just one portrait
can take an illustrator up to five hours to complete [7]. In 2019 the WSJ had a team
of five artists who would spend all day crafting these images. Although nothing can
replace the look of a hand-drawn image, digital rendering can significantly speed up
the process and make this art form more accessible [8].

Figure 1: Glass, Randy. Corpse Bride. [Pen and Ink]. Wall Street Journal. Retrieved
from https://www.randyglassstudio.com/wall-street-journal-hedcuts.



2 Introduction

0.1 What Are Hedcuts

The WSJ once frowned upon the extensive use of photographs in its publications.
Editors felt like a heavy use of photographs would distract from the quality and
content of the articles [38, p. 356]. Fred Taylor, a past editor, has famously been
quoted saying “one word is worth a thousand pictures” [38, p. 356]. So how is it that
today, hedcut portraits have become an icon of the WSJ?

Hedcuts first appeared in the WSJ in 1979 when artist Kevin Sprouls presented
his stipple and hatching drawings to WSJ. Sprouls’ work mirrored that of traditional
currency and certificate engravings, for example the portraits shown in Figure 2.
Editors felt that this style was more legible than the halftone portraits that were
frequently seen in other papers, for example the cat in Figure 3. Halftoned images
are made up of black dots placed along a rigid grid with dot size and density reflecting
tone. Unlike halftone portraits, the stipples in hedcuts have a flow that follows the
contours and surface features of the subject, allowing the portraits to be simple and
intentional [38, p. 356]. The WSJ’s editors saw a certain sophistication in this style
which they deemed compatible with WSJ’s aesthetic sensibility [8]

Figure 2: Civil War era currency engravings from Wikimedia Commons. Image
licensed under CC BY-SA 3.0.

Over time the hedcut process has become perfected and the art form is still done
by hand with little use of technology. Every day the WSJ’s artists print their as-
signed photograph and trace it in ink with stipples and hatches. The final image is
scanned and emailed back to the editors. Although the artists are essentially tracing
the photograph the process is still painstaking and deliberate [7]. Just placing dots
randomly throughout the face would not do. To capture the flow of a hedcut“you have
to know how a face is built, you have to understand the bone structure of the face”
[6]. Each dot is placed intentionally, slowly bringing out the contours and shading of
the subject’s face while remaining simple and minimalistic.
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Figure 3: A halftoned cat from Wikimedia Commons. Image licensed under CC BY-
SA 3.0.

0.1.1 The Core Qualities of a Hedcut

Although there is slight variation in style amongst different hecut artists I have iden-
tified a number of “core qualities” that are found in nearly every hedcut I examined.
This list is by no means final, however I found it useful for evaluating results later
on. These qualities are as follows:

Hedcuts...

□ are small [7]

□ are portraits of people or animals1

□ only include the subject’s face without the background

□ are two tone (black and white) images

□ use the size of stipple dots and the thickness of hatch lines to depict tone

□ use stipple dots to shade the subject’s face [8]

□ use hatch lines to shade the subject’s clothing

□ place stipples so they align with facial features [38]

□ do not place dots in the highlights of a subject’s face

□ use denser stippling for key features such as a subject’s eyes, nose, and lips

□ use strokes for hair

□ outline the subject with strokes

1WSJ uses a stippled style to illustrate their daily feature known as the “A-hed” which can
include broader scenes rather than just portraits [8]. For this thesis, however, we will only consider
hedcuts to be of people and animals.



4 Introduction

0.2 Non-Photorealistic Rendering

In the earlier days of computer graphics, the driving force behind the field was pho-
torealism [17, p. 1]. However impressive photorealism is, it is not always the best
way to convey visual information to the viewer. Gooch and Gooch [17, p. 1] use
the example of a sailboat to describe this phenomenon. A photorealistic image of
a sailboat allows the view to infer a vast amount of information about the scene:
the time of day, weather, speed of the boat, etc. They explain, however, that “such
an image would be little use to someone attempting to build a sailboat” who would
“certainly prefer technical drawings or blueprints, while someone who simply wanted
to communicate the idea of a sailboat may only need to draw a shape representing the
boat and a triangle representing the sail” [17, p. 1]. Renderings that do not aim to
create photorealistic animations or images and that intentionally omit a certain level
of detail are called non-photorealistic renderings (NPR). Digitally rendered hedcuts
are a form of NPR.

0.2.1 General Motivation for NPR and This Thesis

NPR images and animations are able to concisely and effectively communicate an idea
by harnessing the techniques traditionally used by artists to emphasize features or a
scene, expose minute attributes, or omit extraneous information. In the case of hed-
cuts, this means omitting features like color or the fine grain aspects of facial texture
and emphasizing the lines and curves of one’s face. Understanding the motivations
behind NPR is critical for designing new techniques and informing the practical ap-
plication of the field. In a survey of image and video-based artistic stylisation [20]
Isenberg overviews a variety of studies on the effectiveness of NPR.

Schumann et al. [35] examined the use of NPR in architectural renderings and
found that the style of a rendering can have an effect on how willing someone is to
interact with the depiction [20, p. 314]. Duke et al. [13] examined the use of NPR in
psychological principles and Harper et al. [18] focused on aspects of environmental
psychology and how level of detail in a rendering affects people’s behavior. Both
researchers found that the control in the amount of detail in NPR can be used to
effectively guide people’s attention and emotions [20, p. 316]. These studies and others
like them motivate the continued development of NPR for effective communication of
designs, directing peoples attention to certain aspects of a figure, and the effect these
renderings can have on emotion [20, p. 317].

My work has similar motivations. Hedcuts are an efficient method for portraying
the subject while directing the viewers’ attention to the flow and alignment of facial
features. Additionally, I wanted to take on an NPR thesis because doing so would
give me the opportunity to experiment in the field of image processing while building
on my existing knowledge of computer graphics. Finally, I am not an artist, however,
this thesis gave me the opportunity to explore computer generated art. The diffi-
culties I encountered in rendering hedcuts gave me an appreciation for the work of
hedcut artists and a deeper understanding of the knowledge of the human face that
is necessary for this style.
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0.3 Generating Hedcuts with and without Artifi-

cial Intelligence and Machine Learning

In recent years various labs such as the WSJ’s Research and Development (R&D) team
have built Artificial Intelligence (AI) models that quickly2 render hedcut style por-
traits based on an input image. The WSJ’s R&D team trained their model by “[run-
ning] ever more data points [portraits of people and hand-drawn hedcuts] through
[the] model, [providing] feedback on the machine’s performance and [watching] it
get progressively better” [8]. The training process involved hand-tagging over 2,000
photos so the machine could learn to recognize precise aspects of a person’s face.

The WSJ team had to overcome many challenges such as teaching the tool to
distinguish the subject from its background, to use hatches for clothing and stipples
for skin, and to properly render bald people. They also overcame the challenge of
“overfitting” which happens when an AI fits a limited set of data too closely. In the
case of the R&D team’s hedcut AI, the result of overfitting was disturbing portraits
like those seen in Figure 4. Although WSJ’s AI has done an excellent job rendering
hedcuts, see Figure 5, it is also possible to render these images without AI or ML.

Figure 4: Early AI rendered hecuts from Wall Street Journal. Used with permission
from The Wall Street Journal, WSJ.com. Copyright 2019 Dow Jones & Company,
Inc. All rights reserved.

When generating hedcuts without AI or ML elements of computer vision and
image processing are combined to extract the necessary facial features from images
and mathematical calculations are used to determine the shape, size, and placements
of stipple dots [36, 25]. In this thesis I will be surveying these techniques, combining

2In 2019 the AI was able to render portraits in about 90 seconds [8].
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Figure 5: AI rendered hecuts from Wall Street Journal. Used with permission from
The Wall Street Journal, WSJ.com. Copyright 2019 Dow Jones & Company, Inc. All
rights reserved.

them in novel ways, and experimenting with new rendering techniques with the goal
of generating “better” looking results.

0.3.1 Related Work

There have been a diverse range NPR approaches for illustrating faces. The goal of
these works is to produce images that are simple but still identifiable as the person in
the original photograph [33]. The style of NPR renderings varies greatly. Kasao and
Miyata [22] propose an algorithm that can produce various styles of paintings from
source photos, including paintings in the style of specific artists such as Van Gogh.
Rosin and Lai [33] also propose a NPR technique in the style of a specific artist, in
this case Julian Opie, part of the New British Sculpture movement. Rhee and Lee
[31] propose a method for cartoon-like avatar generation that closely mimics the style
of Wii avatars.

Using NPR to mimic broader styles is also common. Ostromoukhov [29] intro-
duces basic techniques for digital facial engraving to imitate traditional copperplate
engraving. This style is similar to hedcuts in that the subject is rendered using black
and white lines that follow a general feature flow. There have been many approaches
that apply NPR techniques for rendering hedcuts. Kim et al. [24] propose a stippling
method where dot placement is guided by a feature flow extracted from feature lines.
Son et. al [36] use a structured grid for directional stippling that aligns with fea-
ture lines in both the parallel and perpendicular directions. Kim et al. [25] consider
isophotes (lines with constant illumination) to better capture the perceptual cues of
the input image.

0.4 The Ethical Question

Before we begin I must address the ethical question of machine rendered art, as it
has been a topic of much debate in recent news. The full scope of this discussion is
outside the bounds of this thesis introduction. Nonetheless I will attempt to present
some of the most basic questions surrounding this topic.

These ethical debates typically center around AI generated art and the question
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of whether or not an AI’s renderings fall under copyright violation. An AI that
produces art will learn many different artistic techniques and styles. These AI are
built by “scraping millions of images from the open web, then teaching algorithms
to recognize patterns and relationships in those images and generate new ones in
the same style” [32]. The images an AI is trained on are never included in the
final product but users can direct an AI to render images in a particular style [9].
This could include producing images that look like watercolor paintings or charcoal
drawings. AI can also be trained to produce images that replicate a specific artist’s
unique style. The developers of these AIs rarely ask the artists if their works can be
used to train their AI. As a result an artist who uploads their art to the internet with
the hope of promoting their work may in fact be aiding an AI that could become their
competitor. This creates a slippery slope between AI being “inspired” by the great
artists of our present and our past and them “stealing” artists’ unique styles. Since
the field of AI art is so new lawmakers do not have a clear answer to whether or not
AI training is violating copyright law.

I believe that my thesis and the work of others who attempt to render a particular
artistic style without the use of AI are being “inspired” by these artists rather than
“stealing” their work. Just like an AI attempting to mimic the hedcut style I will
be looking at images found on the open web for inspiration. However,I find that
the scale on which this is done creates a notable distinction between work done with
AI and work done without it. An image processing AI will be trained on massive
amounts of data, thousands of images, nonstop. In my work and others like it that
type of data processing is impossible. In NPR without AI and ML, the programmers
carefully examine example images, make an attempt at mimicking them, compare
the output to the original images, and repeatedly tweak numerical parameters and
redesign algorithms until they reach an output that looks “right”. This process is
slow and tedious and is limited by the amount of time the programmer is willing to
spend on their work3.

0.5 Process Overview

In this thesis I will present a tool I built that attempts to mimic aspects of hedcut
rendering. This tool takes photographs as input and uses image processing and com-
puter vision techniques to output an image that mimics the hand-drawn hedcut style.
To complete this work we closely followed the process defined in Kim et al. [25]. This
process works as follows:

1. Extract the “feature lines” from the image by detecting edges and isophotes.

2. Use the feature lines to generate a distance map.

3. Use the distance map to generate an offset map.

3I, for example, was limited by my need to get eight hours of sleep a night and by the number of
chocolate covered espresso beans I felt was healthy to consume over a 9 month period.
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4. Use the offset map to initially place dots.

5. Use the offset map and the feature lines to adjust the initial dots.

6. Use the input image and adjusted dots to render the final image.

Figure 6 shows an example input image to our program. Figure 8 shows the
intermediary steps in the process. Note that throughout this thesis any figure marked
with †has been modified for legibility purposes. In most cases this means rendering
larger dots than the actual image so they are visible to the reader. Figure 8a shows
the final hedcut rendered with this process. Note that in Chapters 2 and 3 we will
use Figure 6 as our input for consistency. Appendix C shows results with various
input images. For this process I expanded on the work of Kim et al. [25] with
the algorithm used to find the distance between pixels in an image and in the edge
detection process. After getting initial results I experimented with implementing a
completely parameterized approach, rendering with negative space, and rendering
with dot density variation, as seen in Figure 8b and Figure 8c, respectively.
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Figure 6: Actress Sydney Sweeny at theOnce Upon a Time in Hollywood premier
from Wikimedia Commons. Image licensed under CC BY-SA 4.0.
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(a) Step 1, edges. (b) Step 1, isophotes. (c) Step 2, distance map.

(d) Step 3, offset map. (e) Step 4, initial dots†. (f) Step 5, adjusted dots†.

Figure 7: The intermediate steps for hedcut generation.
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(a) Initial rendering of Figure 6.

(b) Rendering of Figure 6 with neg-
ative space.

(c) Rendering of Figure 6 with den-
sity variation.

Figure 8: Three final renderings of Figure 6.





Chapter 1

Background

1.1 Representing Images on a Computer

The images that we see everyday in newspapers, on billboards, and in works of art
are made up of different colors and shapes applied to a physical media. A painter
puts paint on a canvas, a laser jet printer puts ink on pages, a toddler uses crayons to
add flair to their bedroom wall, etc. If we wanted to tell an artist how to reproduce
Figure 1.1a we might tell them to take a black piece of paper, paint a white line down
the middle of it, and another across the center of it. If we wanted to store a digital
version of this image, however, we could not tell our computer to “take out a piece
of paper” and then “paint” lines on that paper. This is because our computer does
not have any paper, nor does it have any paint! Instead our computer has memory
and in that memory it can store numbers.

A digital image is stored in a computer memory as a matrix of numerical values.
Figure 1.1a, for example, can be divided into 25 pixels, 5 in each row and 5 in each
column. A computer would represent this image as a 5× 5 matrix storing the values
of the 25 pixels in the image, as shown in Figure 1.1b. In this image a pixel either
has the value 0 for black or 1 for white. Since a pixel can only take on 2 values this
is a binary image.

Definition 1. In computer vision and image processing a matrix is a two-dimensional
array of numerical values with the same dimensions as the image it represents.

Definition 2. A pixel is a small area in an image to which a numerical value is
assigned [28].

Definition 3. A binary image is an image that only has two gray levels [11].

1.2 Channels, Depth, and Color Spaces

To represent and manipulate an image in a more complex way we need to store more
information at each pixel than just a 0 or 1. We will now introduce the notion of
pixel “channels” and channel “depth”. Then we will show how these factors combine
to give us a sense of the color space of an image.
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(a) A very simple image.

[ [0, 0, 1, 0, 0]
[0, 0, 1, 0, 0]
[1, 1, 1, 1, 1]
[0, 0, 1, 0, 0]
[0, 0, 1, 0, 0] ]

(b) The corresponding rep-
resentation as numbers

Figure 1.1: The pictorial and numerical representations of an image.

1.2.1 Channels

The number of channels in an image corresponds to the number of values needed to
represent each pixel. Recall that in binary images each pixel has a value of either 0
or 1. In a grayscale image each pixel corresponds to a real number value representing
a different shade of gray. Binary and grayscale images can be represented with only
a single channel since each pixel only needs to store one value.

In a color image each pixel must hold more than one piece of information. In a
red, green, blue (RGB) color image, for example, each pixel holds a triple of values
representing its red, green, and blue components. This triple of values corresponds to
the three channels of each pixel, often called color channels. The value in each channel
represents the amount of red, green, and blue in the pixel. Section 1.2.3 explains the
RGB color space in more detail. Figure 1.2 shows the three color channels of an
RGB image. Figure 1.3 shows an image rendered in three ways. Figure 1.3c is a
binary representation. Figure 1.3b is a grayscale representation where pixels have
one channel that holds a range from 0 to 255, Section 1.2.2 explains the significance
of the value 255. Figure 1.3a is a RGB color representation where pixels have three
channels that each hold a range from 0 to 255.

Figure 1.2: RGB channels from Wikimedia Commons. Image reprinted as part of the
public domain.
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(a) A colored flower. (b) A grayscale flower. (c) A binary flower.

Figure 1.3: A colored, grayscale, and binary flower from Wikimedia Commons. Image
reprinted and altered under CC BY-SA 2.5.

1.2.2 Depth

The depth of a channel corresponds to the type of data stored in the channel. In
Figure 1.4 all the matrices have depth 8U meaning each channel stores an unsigned
8-bit integer giving a range from 0 to 255. Using 8-bits per channel is typical since it
does not take up too much memory but still allows for good color range. There are
times, however, when more space is needed. For example when generating distance
maps as described in Section 3.1 I needed images with channel depth of 32S meaning
each channel holds a signed 32-bit integer in the range −2147483648 to 2147483647.
It is also possible to have a depth that is a floating point value rather than an integer
value. Using a floating point depth is common when values get normalized to be in
the range 0 to 1 and fractional values are necessary.

Throughout my thesis, awareness of the number of channels in an image and the
depth of each channel was crucial. At the start of my coding process I encountered
bugs due to manipulating an image as if it was a three channel image when it was in
fact a single channel image. Figure 1.4b and Figure 1.4c are the results of running the
distance map algorithm, explained in Section 3.1.1, with Figure 1.4a as input. Figure
1.4a is of type CV 8UC3 meaning there are 3 channels with depth of 8U. In Figure
1.4b the matrix that the output was being written to was also of type CV 8UC3. In
Figure 1.4c, however, the output was written to a matrix of type CV 8UC1 meaning it
has only one channel resulting in the image being squashed. In other cases the wrong
type of output matrix would result in seg-faults and the program crashing before it
could generate output.

1.2.3 RGB color space

The idea of the RGB color space closely follows the principles of human vision. The
retinas in our eyes contain light receptor cells called rods and cones. Rods detect
light in low-light situations (at night) and cones detect light in greater light situations
(during the day). There are three types of cones which sense different wavelengths
of light, long, medium, and short. They are often referred to as “red”, “green”,
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(a) Input image of type
CV 8UC3.

(b) Output written to
CV 8UC3 image.

(c) Output written to
CV 8UC1 image.

Figure 1.4: A bug due to an image matrix having the wrong type.

and “blue” receptors due to the range of wavelengths they detect [19, p. 749]. The
combination of the responses from the cones generates a sensation of color making
human vision an additive color model. Yellow, for example, is an “invented” color.
The brain processes and combines the information detected by the red and green
cones to perceive the color yellow.

Definition 4. Additive color is the process of adding different wavelengths of light to
create a specific color. The visible light spectrum’s primaries (red, green, and blue)
are mixed in various quantities to produce secondary colors [30].

In the RGB color space, each pixel holds three values. The first corresponds to
the red component of the color, the next to the green, and the last to the blue1. Like
human vision the RGB color model is an additive color model meaning we start with
black (0) and add red, green, and blue components to produce the spectrum of color.
We can thus represent the RGB color space as a cube where the X, Y , and Z axes
correspond to the range of red, green, and blue, as seen in Figure 1.5.

In Figure 1.5 we can see that black is represented as the triple (0, 0, 0) meaning
no color is added to any channel and white is represented as the triple (255, 255, 255)
meaning the maximum amount of color added to each channel. Pure red is represented
as the triple (255, 0, 0), pure green as (0, 255, 0), and pure blue as (0, 0, 255)2. We can
combine different amounts of these three primary colors to generate other colors such
as magenta which is equal parts pure red and pure blue, (255, 0, 255). If we wanted

1The image processing library OpenCV uses the BGR color space for color images by default
meaning pixels store the blue component first, then the green, then the red. This was quite surprising
to me at first since the vast majority computer graphics and image processing libraries and tools use
RGB. In the early days of OpenCV the BGR format was popular among camera manufacturers and
software providers [27]. This popularity meant OpenCV used BGR as their default color space. This
anomaly does not result in any bugs since OpenCV will read in images unchanged, hence maintaining
the RGB format.

2Note that in this representation of RGB color space the channel depth is a 8-bit unsigned
integer. The channel depth can be changed but we can still make pure red, green, or blue by giving
the respective channel its maximum value and setting the other channels to 0.
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Figure 1.5: RGB cube from Wikimedia Commons. Image reprinted under CC BY-SA
3.0.

something closer to violet we would decrease the amount of red and blue and add
a little bit of green, giving a value like (64, 25, 127). We can still represent all the
shades of gray in the RGB color space. The possible shades of gray lie on the diagonal
between black, (0, 0, 0) and white, (255, 255, 255). Thus a gray value will have equal
values for the red, green, and blue components.

1.2.4 CIE color space

RGB and BGR are by no means the only way to define color. Printers, for example,
use the CMYK, Cyan-Magenta-Yellow and black (K), model of color3 and U.S. com-
mercial television broadcast uses the YIQ model which was designed so televisions
could broadcast a signal for both black-and-white and color televisions while using
bandwidth efficiently [19, p. 774, 775]. In 1931 the International Commission of Illu-
mination (CIE) defined three standard primaries, X, Y , and Z which together form a
triangle that encompasses all possible sensor responses [19, p. 763]. These primaries
have the following advantages:

1. The Y primary is exactly the luminous efficiency for a spectral light source.
Thus if we have a light source T written as T = cxX + cyY + czZ the
coefficient cy corresponds to the perceived intensity of the light 4.

3The CMY color model is a subtractive color model meaning colors are created by removing
wavelengths. This process is similar to what an artist would do when mixing paints. To create
green, for example, an artist would mix blue and yellow. When the paints are mixed the resulting
color is the wavelengths that both paints reflect [30]. In the CMYK model K, pure black, is needed
because mixing equal parts cyan, magenta, and yellow doesn’t quite create pure black [19, p. 775].

4This was significant in developing black-and-white televisions. The signal needed to provide
some sort of Y component of the lights that the camera was perceiving. When color signals began
being broadcast as well, the cx and cz components, which define color, were sent in a different band
which black-and-white televisions would ignore [19, p. 763].
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2. The color matching functions for X, Y , and Z are everywhere nonnegative so
all colors are expressed as non-negative linear combinations for the primaries.

3. Then red, green, and blue primaries can be identified as points in the XYZ-space
so any color that is found in the RGB-space can be found in the XYZ-space
with a direct conversion.

The first and third points were of particular importance for this thesis. At times it
was necessary to convert between RGB and CIE spaces which is possible due to point
three. Other times it was necessary to examine the luminosity of a pixel which could
be done using a pixel’s Y component. In particular, this thesis uses the CIEL∗a∗ b∗
color space as seen in Figure 1.6. The L∗ component captures the notion of intensity
and the a∗ and b∗ components encode chromaticity, a∗ gives relative red-green and
b∗ gives relative blue-yellow [19, p. 769]. In Figure 1.6 we can see that as the L
component decreases the colors become less intense.

Figure 1.6: The CIE 1976 L*a*b* color space showing only colors that fit within
the standard RGB space (displayed on a typical computer monitor) from Wikimedia
Commons. Image reprinted and altered under CC BY-SA 3.0.

1.3 Tech Stack

The primary technologies used for this thesis were OpenCV with C++ and Aseprite.
OpenCV provided me with a robust framework of image processing functions ranging
from the basic operations (reading in and saving images, converting an image from
color to grayscale and vice versa, applying thresholds etc.) to more complicated
filters and algorithms (Difference of Gaussians, Canny edge detection, bilateral filters,
connected component detection, etc.). I give a brief overview of the more complicated
functions I used in Section 1.4. I opted to use OpenCV with C++ rather than Python
since C++ programs often execute faster. Image processing often requires looping
over every pixel in the image at least once. If an input image has n rows and n
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columns an algorithm that looks at each pixel (without the use of parallelism5) would
take O(n2) time6. Using language systems other thanC++ would likely have less
acceptable performance.

Aseprite was used to create every simple input image you see in this thesis, for
example Figure 1.4a. Being able to create minimal input images was essential for
debugging my work. When testing and debugging code a programmer will run their
work with the simplest possible input. In my case these were binary images that were
only a few pixels wide.

1.4 Overview of Library Functions Used

The majority of the library functions I used were some type of filter. Filters modify
or enhance an image through neighborhood operations. That is, the output value of
a given pixel is calculated with respect to the values of the pixels in its neighborhood.
Often filters will use a kernel to sample the values of the pixels in the neighborhood.
A kernel is simply a matrix of values that is placed on each pixel in the input image.
The value for p in the output image is calculated using the kernel and the pixels in
p’s neighborhood.

Definition 5. A pixel’s neighborhood is a set of pixels, denoted N , defined by their
proximity to a given pixel, p [4].

Say we wanted to create a simple “shift-left” filter which takes an image as input
and outputs the same image but shifted to the left by one pixel. We will define the
neighborhood, N , of a pixel, p, as p and the eight pixels touching p. The kernel used
for this operation is shown in Figure 1.7.

0 0 0
0 0 1
0 0 0

Figure 1.7: A simple kernel

Suppose we use Figure 1.8a as our input image. To generate our output image we
will place the center of our kernel, the shaded cell in Figure 1.7, on each pixel, p, of
the input image. When we do so each pixel in p’s neighborhood, q ∈ N , will have a
cell of the kernel on top of it. We will calculate

s =
∑
q∈N

q.value · k[q]

Where q.value is the value of pixel q and k[q] is the kernel value at pixel q when the
kernel is centered at p. Then we will set the value of p in the output image to be s.

5Parallelism is a technique that makes programs faster by performing several computations at
the same time.

6An O(n2) algorithm (quadratic time algorithm) will execute in time proportional to the square
of the size of the input.
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(a) The input to the “shift-
left” filter.

(b) The output of the
“shift-left” filter.

Figure 1.8: The result of applying a simple filter to a simple input image

To apply the “shift-left” filter to Figure 1.8a we first place the center of the kernel
on pixel (0, 0), as shown in Figure 1.9a. We calculate the value of pixel (0, 0) in the
output image as:

s = (0× 0) + (1× 0) + (0× 0) + (0× 0) = 0

Then we will give pixel (0, 0) a value of 0 in our output image. Now we move our
kernel to pixel (0, 1), as seen in Figure 1.9b, and get the output value as

s = (0× 0) + (0× 0) + (1× 1) + (0× 0) + (0× 0) + (0× 1) = 1

Then we will give pixel (0, 1) a value of 1 in our output image. Note that in each of
these cases only part of the whole kernel was placed on the image, which is allowed.
If we were to calculate the output value for pixel (4, 1) we would move our kernel to
pixel (4, 1), as seen in Figure 1.9c, and get the output value as

s = (0×1)+(0×1)+(0×1)+(0×0)+(0×0)+(1×1)+(0×0)+(0×0)+(0×1) = 1

Then we will give pixel (4, 1) a value of 1 in our output image.
After applying the “shift-left” filter to every pixel we will have our complete output

image which is the simple white cross shifted to the left by 1 pixel as seen in Figure
1.8b.

1.4.1 Bilateral Filtering

A bilateral filter smooths an image thus removing noise while preserving edges. Other
approaches to filtering assume a slow spatial variation in pixel values. It is assumed
that pixels near each other have similar values and can therefore be averaged together
[37]. This results in blurred edges which is not acceptable for this work. Bilateral
filters, in contrast, only average together perceptually similar colors. The bilateral
filter can be told explicitly which colors are similar and which are not [37].

Bilateral filters define two types of filtering, domain filtering and range filtering.
These filters rely on pixels being close to each other or pixels being similar to each
other.
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0 × 0 1 × 0 1 0 0
0 × 0 0 × 0 1 0 0
1 1 1 1 1
0 0 1 0 0
0 0 1 0 0

(a) The kernel applied to
pixel (0, 0)

0 × 0 0 × 0 1 × 1 0 0
0 × 0 0 × 0 0 × 1 0 0
1 1 1 1 1
0 0 1 0 0
0 0 1 0 0

(b) The kernel applied to
pixel (0, 1)

0 0 1 0 0
0 0 1 0 0
0 × 1 0 × 1 0 × 1 1 1
0 × 0 0 × 0 1 × 1 0 0
0 × 0 0 × 0 0 × 1 0 0

(c) The kernel applied to
pixel (4, 1)

Figure 1.9: Various placements of the kernel in Figure 1.7 to the image in Figure 1.8a
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Definition 6. Two pixels are close if they occupy a nearby spatial location.

Definition 7. Two pixels are similar if they have nearby values, possibly in a per-
ceptually meaningful fashion.

Definition 8. Domain Filtering enforces closeness by weighing pixel values with
coefficients that fall off with distance [37].

Definition 9. Range Filtering averages image values with weights that decay with
dissimilarity. The weights depend on image intensity or color [37].

Bilateral filtering combines domain and range filtering in order to smooth the
image while maintaining edges.

(a) Input image (b) Bilateral filtering

Figure 1.10: The result of bilateral filtering.

1.4.2 Sobel Operator

The Sobel operator performs a 2-D spatial gradient measurement to find regions of
high spatial frequency (regions where image intensity changes rapidly) which corre-
spond to edges [16]. The Sobel operator consists of two 3 x 3 kernels, as seen in
Figure 1.11.

-1 0 1
-2 0 2
-1 0 1

(a) Gx

1 2 1
0 0 0
-1 -2 -1

(b) Gy

Figure 1.11: The Sobel convolution kernels
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The orientation of these kernels allows them to respond maximally to edges that
are vertical or horizontal relative to the pixel grid. Applying each of the kernels to the
input image will result in a measurement of the gradient component in the horizontal
and vertical directions, Gx and Gy. These gradients correspond to the rate of change
in pixel intensity, areas with a greater rate of change indicate edges.

The absolute magnitude of the gradient at each pixel is given by |G| =
√
G2

x +G2
y.

The orientation of the edge, relative to the pixel grid is given by θ = arctan(Gy

Gx
).

If θ = 0 then we have a perfectly horizontal edge where the maximum contrast
from black to white runs from left to right [16]. Figure 1.12 shows the Gx and Gy

components of the Sobel operator as well as the absolute gradient.

(a) The input image.
(b) Result of Sobel opera-
tion.

(c) The Gx component of
the Sobel operation.

(d) The Gy component of
the Sobel operation.

Figure 1.12: The Sobel operation and its components.

1.4.3 Canny Edge Detection

The Canny Edge Detection algorithm begins with noise reduction. Edge detection
can become muddled if an image contains too much noise so Canny Edge Detection
uses a 5× 5 Gaussian Filter for noise reduction. Next the orientation of the edges in
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the input image are calculated. This is done using a Sobel operator as described in
Section 1.4.2.

Once these values are found a full scan of the image is done to remove pixels that
are not parts of the edges by checking if a pixel is a local maximum of its neighborhood
in the direction of the gradient. The Canny Edge Detection algorithm defines two
values maxVal and minVal. If a potential edge has intensity gradient that is greater
than maxVal it is kept as an edge. If the intensity gradient is below minVal then it is
discarded. If the intensity value is between maxVal and minVal the edge is kept if it is
connected to pixels that have intensity gradients greater than maxVal and discarded
if it has no such connections. Figure 1.13 shows edges detected using Canny edge
detection.

Figure 1.13: The edges returned by Canny edge detection.

1.4.4 Color Conversion

There are many ways to convert an image from one color space to another. In OpenCV

the function cvtColor takes an input matrix, output matrix, and color conversion
code. The COLOR RGB2GRAY code transforms a color image to grayscale by averaging
the R, G, and B components of the input image.

The COLOR RGB2LAB code transforms a color image in the RGB color space to a
color image in the CIEL ∗ a ∗ b color space. See Appendix A for more detail.

1.4.5 Morphological Operations

Morphologies are a robust set of image processing operations that manipulate an input
image based on shapes. The structuring element that is used to process the image
can be of any size or shape and is often a rectangle, ellipse, or cross. The input image
typically contains objects whose pixels will either be kept, removed, or expanded,
based on the operation being performed. There are several types of morphological
operations but they all follow this basic formula: we place the structuring element on



1.4. Overview of Library Functions Used 25

each pixel of the input image and determine if there is a fit, hit, or miss, Figure 1.14.
The pixel is kept (set to 1) or removed (set to 0) based on the specific operation.

Definition 10. A fit occurs when the structuring element covers only pixels that are
part of the object in the input image [12].

Definition 11. A hit occurs when the structuring element covers both pixels that
are part of the object and those that are not [12].

Definition 12. A miss occurs when the structuring element covers no pixels that
are part of the object in the input image [12].

Figure 1.14: Morphology determinations.

There are four different morphological operations that uniquely use fits, hits, and
misses to manipulate images.

1. Erosion removes pixels from the object’s boundaries. If the structuring element
is placed on a pixel the pixel is kept only if there is a fit, it is removed otherwise.
Erosions are useful for smoothing lines or making them thinner, as shown in
Figure 1.15.

2. Dilation expands the object’s boundaries. If the structuring element is placed
on a pixel and there is a fit or a hit the pixel is kept, it is removed otherwise.
Dilations are useful for filling gaps in an image or thickening lines, as shown in
Figure 1.16.

3. Opening is a compound operation, it is an erosion followed by a dilation.
Openings are useful for removing noise from an image while maintaining the
thickness of original objects and lines, as shown in Figure 1.17.

4. Closing is another compound operation, it is a dilation followed by an erosion.
Closings are useful for removing small holes or black points in an object or
image, as shown in Figure 1.18.
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Figure 1.15: Morphological erosion by an elliptical element of size 4.

Figure 1.16: Morphological dilation by an elliptical element of size 4.

Figure 1.17: Morphological opening by an elliptical element of size 3 to remove noise.

Figure 1.18: Morphological closing by an elliptical element of size 3 to fill holes.
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1.4.6 Thresholding

In simple thresholding we set two values, thresh and maxValue. For each pixel we
examine its value, if it is smaller than thresh then the pixel’s value gets set to 0,
otherwise it is set to maxValue [3]. Thresholding is frequently used for converting
grayscale images to binary images.

(a) A gradient of
grayscales

(b) maxValue = 0
and thresh = 127

(c) maxValue = 0
and thresh = 255

Figure 1.19: A grayscale image thresholded at different values
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Extracting Feature Lines

The first step of any hedcut rendering is to extract the feature lines from an image
[25, 36, 24]. The feature lines denote the outline of the face, eyes, nose, lips, etc. and
also give an idea of the highlights of the face such as the cheek bones or the forehead.
Accurately completing this step is critical for the later placement of dots. We found
that sloppy detection of edges would compound issues in later steps.

2.1 Edge Detection

Sobel, Laplacian of Gaussian (LoG), and Canny are all viable edge detection algo-
rithms. Kim et al. [25] opt to use a Difference of Gaussians (DoG) filter as an
approximation of the LoG filter. In this work we found that the OpenCV Canny oper-
ator outperformed the DoG operator in terms of accuracy of feature extraction. We
rely heavily on OpenCV operations here but attempt to combine them in novel ways
to improve upon the results of Kim et al. [25].

First we convert the image to grayscale and apply the blur operator to remove
noise from the input using a normalized box filter, see 2.1a. We apply the canny

operator on the results to retrieve the initial edges, see Figure 2.1b. To refine these
edges we apply a morphological dilation to close any small holes and thicken edges,
see Figure 2.1c. Finally we apply a median filter to smooth the edges, see Figure
2.1d. Figure 2.2 shows these refinements in more detail.

2.1.1 Thresholding Edges

After the edges have been found we threshold the image to remove any short edges
as done in Kim et al. [25]. For this we use an OpenCV operator1 which takes an input
and binary image and finds all connected components in that image. This function
returns two output matrices, stats and labels, which are used to find short edges.
In the labels output matrix each connected component is colored based on its index
i.e. the nth component has a grayscale value of n.

1OpenCV connectedComponentsWithStats
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(a) After grayscale
conversion and blur-
ring.

(b) Initial edges
detected with the
Canny operator.

(c) Edges thickened
with morphological
dilation.

(d) Edges smoothed
with median blur
filter.

Figure 2.1: Edges detected before thresholding.

(a) Edges detected after
canny filter.

(b) Edges after morpholog-
ical dilation.

(c) Edges smoothed with
median blur.

Figure 2.2: Closeup of edge refinement process.
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To determine if the ith connected component meets the threshold value we must
isolate the sub-matrix that contains that individual edge. This sub-matrix may,
however, contain other partial edges. These can easily be removed by analyzing the
color of each pixel and setting all pixels without a value of i to black. Next we can
estimate the length of the ith component by extracting its morphological skeleton.
Skeletonization of a binary image is the process of reducing all curvilinear objects to
a line that is no more than two pixels wide, like the letters in Figure 2.4 [11, p. 474].
The line that remains can be used as a rough estimation of the object’s length,
as shown in Figure 2.3. Our work uses the algorithm for extracting a morphological
skeleton described in a blog post by Félix Abecassis [5]. The skeleton can be extracted
using the morphological operations described in Section 1.4.5. First a morphological
opening is performed and the result is inverted. Then a bitwise or of the opening
and the original image is computed. We repeat this process and stop before the final
iteration that would result in a completely empty image. We use the number of white
pixels in the skeleton as an estimate for the edge’s length.

Figure 2.3: The skeleton of lines as an estimation of their length.

(a) My initials. (b) The skeleton of 2.4a.

Figure 2.4: An image and its skeleton.

We use a dictionary, remove, to indicate whether or not a component, i, meets
the threshold by setting

remove[i] = !(meetsThreshold(skel, threshold))
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where i is the edge’s color in the labelsmatrix and meetsThreshold(skel, threshold)

returns true if the number of white pixels in the skeleton is greater than or equal to
the threshold parameter.

Finally, we can loop over the labels matrix and for each pixel we extract its color
c. If remove[c] is true we set that pixel to have color 0, otherwise the color is 255.
The complete pseudocode for the thresholding algorithm can be found in Appendix
B.1. Figure 2.5 shows the result of thresholding to remove edges with a length less
than 50. After thresholding we apply a median filter one more time to smooth edges,
see Figure 2.6.

Figure 2.5: Thresholding to remove edges of length less than 50 px.

(a) Thresholded edges from
Figure 2.1d.

(b) Edges after final me-
dian blur.

Figure 2.6: The final edges detected with our algorithm.
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2.2 Isophote Detection

A major difference between Kim et al. [25] and other approaches to hedcut creation is
the consideration of isophotes. Isophotes are useful for isolating and analyzing local
shapes or for representing depth relationships [25]. An artist might add depth to
a sphere by adding isophotes to capture shading and highlights. In Figure 2.7a the
sphere appears flat. In 2.7b the lighter regions help give an illusion of depth. In a face
isophotes bound regions of different depths such as the apples of the cheek, forehead,
tip of the nose, etc2.

Definition 13. An isophote is a curve connecting points of equal intensity.

(a) A flat sphere. (b) A sphere with depth.

Figure 2.7: In 2.7b isophotes are added to give the illusion of depth

It is easy for humans to detect isophotes in a face. Even if every pixel in Sydney
Sweeny’s cheeks in Figure 2.8a are not the exact same intensity we can still tell
that this region is a highlight and has a different depth than her chin. A computer,
however, would have trouble detecting these isophotes because there are few areas
where pixels have the exact same intensity. To detect and isolate isophotes we must
quantize our input image. Quantizing is the process of grouping or “binning” intervals
of data into a single value or quantum. First a bilateral filter is applied to smooth the
image, see Figure 2.8b. Next, we convert the image from RGB space to CIEL∗a∗b∗
space, see Figure 2.8c. Recall that in CIEL ∗ a ∗ b∗ space the L value of a pixel
gives its luminosity. Then we convert the image to grayscale by retaining only the L
component of each pixel and quantize to reduce the ranges of gray, see Figure 2.8d.
This effect is also referred to as posterization.

Posterization expands the areas where pixels have the exact same value. We can
use the segmented areas of the posterized image to find isophotes. First, for some
predefined threshold value t, we select only the top t segmented areas by setting the
pixels in these areas to 255 and the pixels in areas that are too dark to 0, see Figure
2.8e. Then, we perform edge detection on these segments. The result is the isophotes
of the face, see Figure 2.8f.

2You can also think of the isophotes of the face as the areas where one would place highlighter
or contour when doing makeup. The purpose of these products is, after all, to shape the face by
adding lines of constant intensity which give the illusion of depth
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(a) Input image (b) Bilateral filtering (c) CIEL*a*b conversion

(d) Quantizing the L value (e) Thresholding (f) Edge detection

Figure 2.8: The intermediate steps for isophote detection.
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Stippling

Once we have extracted the edges and isophotes of an image we use these lines to
place dots. First we generate a weighted distance map, see Figure 3.1a. Then we
produce an offset map by evenly spacing lines throughout the weighted distance map,
see Figure 3.1b. The offset map is used to place the initial stipple dots which are
then adjusted so that they follow the flow of the initial feature lines, see Figure 3.1c
and Figure 3.1d. Finally the stipple dots are rendered with dot size being informed
by the luminosity in the initial input image, see Figure 3.1e.

3.1 Weighted Distance Maps

We want to place stipple dots evenly throughout our rendering and we want these
dots to follow the flow of the feature lines. To accomplish this we must know the
distance between any given pixel and the feature line that it is closest to. This is
done by generating a distance map which is a grayscale image where each pixel’s value
gives the distance between that pixel and the nearest seed pixel in the input image.
For this work the input images were the edges and isophotes detected in Sections 2.1
and 2.2, respectively.

Definition 14. In a binary image with a white background a seed pixel is a pixel
that has value 0 (black), the black pixels in Figure 3.1c.

Figure 3.2 shows a distance map for the simple input image in Figure 3.2a. Note
that the final distances are rounded integers. For a pixel, p, that makes up a feature
line, such as pixel (2, 0), p is given a value of 0 in the distance map since the distance
between p and the nearest seed pixel is the distance from p to itself.

In a weighted distance map certain seed pixels, say those that make up isophotes,
are given priority and then the map is skewed in that direction. A weighted and
unweighted distance map for an image with edges and isophotes is shown in Figure
3.3. Section 3.1.2 covers the generation of these maps in detail.

The first step of generating these maps is to find the distance of each pixel from a
feature line. Initially I approached this task with the Jump Flood Algorithm which is
done in Kim et al. [25]. I did not end up using this algorithm in my final approach be-
cause it was noticeably slow for large images. Instead I opted to use Felzenszwalb and
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(a) Weighted distance map. (b) Offset map. (c) Initial dots†.

(d) Adjusted dots†. (e) Rendered dots.

Figure 3.1: The intermediate steps for stippling.

(a) A very simple image.

[ [2, 1, 0, 1, 2]
[1, 1, 0, 1, 1]
[0, 0, 0, 0, 0]
[1, 1, 0, 1, 1]
[2, 1, 0, 1, 2] ]

(b) The corresponding
weighted distance map
represented numerically.

Figure 3.2: An image and its distance map.



3.1. Weighted Distance Maps 37

(a) A simple image with an edge (blue) and isophote (green).

[[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
[ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ]
[ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 ]
[ 3, 3, 3, 3, 3, 3, 3, 3, 3, 3 ]
[ 4, 4, 4, 4, 4, 4, 4, 4, 4, 4 ]
[ 4, 4, 4, 4, 4, 4, 4, 4, 4, 4 ]
[ 3, 3, 3, 3, 3, 3, 3, 3, 3, 3 ]
[ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 ]
[ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ]
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]]

(b) The corresponding unweighted distance map represented numerically.

[[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
[ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ]
[ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 ]
[ 3, 3, 3, 3, 3, 3, 3, 3, 3, 3 ]
[ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 ]
[ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 ]
[ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ]
[ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ]
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]]

(c) The corresponding weighted distance map represented numericallya.

aRecall that pixels only have whole integer values. The pixels in row 9, for example, should have
a value of 0.5 but are rounded down to 0. See Section 3.1.2 for more detail.

Figure 3.3: An image with an edge and an isophote and its weighted and unweighted
distance maps.
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Huttenlocher’s Sampled Distance Transformation as described in [15] which performs
much better1.

3.1.1 Sampled Distance Transformation

The Felzenszwalb and Huttenlocher method utilizes a generalized distance transform
for arbitrary functions on a grid. This allows for distance transforms on real-valued
images rather than exclusively binary valued distances. Consider the regular grid G
and a function on the grid f : G → R. Felzenszwalb and Huttenlocher refer to a
function on a grid as a sampled function. Given a sampled function, f , a function for
calculating distance, d, the distance transform of f is then the function Df : G → R
such that

Df (p) = min
q∈G

(d(p, q) + f(q))

In other words, given a point p, we are finding the point q such that the distance
between p and q, d(p, q), is small and the function f(q) is also small.

Felzenszwalb and Huttenlocher method first computes the distance map in one
dimension only. Then the same algorithm is run in the second dimension to compute
the final distance in a two dimensional space. This process can be repeated for arbi-
trary dimensions.

One Dimension
Let G = {0, · · · , n − 1} be a one-dimensional grid, let f : G → R be a function

on the grid. We can compute the squared Euclidean distance transform by using
d(p, q) = (p− q)2. So the distance transform for f is:

Df (p) = min
q∈G

((p− q)2 + f(q))

Felzenszwalb and Huttenlocher note that for each point q ∈ G the distance trans-
form of f be bounded by a parabola rooted at (q, f(q)), we will refer to this parabola
as “the parabola at q”. Note that the parabola rooted at (q, 0) will give the distance
between q and any other point s ∈ G. To take the function f into account we must
shift the parabola rooted at (q, 0) vertically by f(q). Therefore the distance between
q and s will lie on the parabola rooted at (q, f(q)).

We can define the distance transform by the lower envelope of these parabolas as
shown in Figure 3.4. For any point p ∈ G we can find Df (p) by computing the height
of the lower envelope at p. To compute Df (0) we note that the lower envelope at
p = 1 is given by the parabola rooted at 0. So Df (0) is the height of that parabola
at the horizontal position of 1. To compute Df (1) we note that the lower envelope
at p = 1 is also given by the parabola rooted at 0. So Df (1) is the height of that
parabola at the horizontal position of 1.

1The Jump Flood Algorithm has O(N logN) running time whereas Felzenszwalb and Hutten-
locher’s method has O(N) running time.
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Figure 3.4: The distance transform as the lower envelope of n parabolas from Felzen-
szwalb and Huttenloche, 2012. Image reprinted under CC BY 3.0.

To compute this lower envelope we can note that any two parabolas in the distance
transform intersect at exactly one point. The intersection of the parabolas with rooted
at (q, f(q)) and (r, f(r)) is given by:

s = ((f(r) + r2)− f(q) + q2)/(2r − 2q)

The structure of the lower envelope is tracked using two arrays, v and k. The
array v gives the horizontal position of the root of the i-th parabola. In Figure 3.4
v[0] = 0 and v[1] = 2. The parabola rooted at (1, f(1)) is not part of the lower
envelope so there is no i such that v[i] = 1. The z array tracks the range in which
the i-th parabola of the lower envelope is below the others. z[i] gives the start of that
range and z[i + 1] gives the end of that range. In Figure 3.4 z[0] = −∞, z[1] ≈ 1.5,
and z[n] = ∞. We also keep a variable k to track the total number of parabolas in
the lower envelope.

Parabolas are added or removed from the lower envelope as follows. Consider
the parabola at q which is not yet determined to be in the lower envelope. Let s be
the intersection between the parabola at q and the parabola at v[k] (the rightmost
parabola of the lower envelope). z[k] will give the start of the range in which the
parabola at v[k] is below all others in the lower envelope and z[k + 1] will be ∞. If
s > z[k] then the parabola at q and the parabola at v[k] intersect after the point at
which the parabola at v[k] is below the others. This means the parabola at q will be
below the rightmost parabola in the range z[k] to ∞. In this case, the parabola at q
must be added to the lower envelope. If s < z[k] then the parabola at v[k] intersects
with the parabola at v[k] parabola before the parabola at v[k] is below the others.
This means the parabola at q will be below the others before the parabola at v[k]
becomes below the others. In this case the rightmost parabola should be removed
from the lower envelope and the parabola at q should be added to the lower envelope.
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Figure 3.5 demonstrates these cases.

Figure 3.5: The two cases when adding the parabola from q to the lower envelope
from Felzenszwalb and Huttenlocher, 2012. Image reprinted under CC BY 3.0.

The second step of this algorithm populates the values of Df (p) by determining
the height of the lower envelope at that grid position p. A proof of correctness for
these algorithms is given in Felzenszwalb and Huttenlocher’s paper [15].

Two Dimensions
Now consider a two-dimensional grid G = {0, · · · , n − 1} × {0, · · · ,m − 1} and the
function f : G × R. The two-dimensional distance transform of f under the squared
Euclidean distance is given by

Df (x, y) = min
x′,y′

((x− x′)2 + (y − y′) + f(x′, y′)

= min
x′

((x− x′)2 +min
y′

((y − y′)2 + f(x′, y′)))

= min
x′

((x− x′) +Df |x′ (y))

Df |x′ (y) is a one dimensional distance transform with f restricted to column x′. Thus
to compute a two-dimensional distance transform the distance transform is first com-
puted in one dimension along each column of the grid and the result of the distance
transform is stored in that grid. Then the distance transform is computed in one
dimension along each row of the grid.

In the resulting grid, however, a pixel, p, will not hold the Euclidean distance
from p to the closest seed pixel. Instead, p will hold the squared Euclidean distance
between the two pixels. One final pass must be done over the grid to take the square
root of each pixel value. The two passes of the distance transform are shown in Figure
3.6. Appendix B.2 gives the pseudocode for the full algorithm.
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(a) An input image for dis-
tance transformation.

(b) Transform of input
along each column.

(c) Transform of 3.6b along
each row.

Figure 3.6: An image and its distance map.

3.1.2 Applying Weight / Priority

Creating a weighted distance map is simple. First a distance map is created for the
edges and isophotes. Figure 3.7 shows the distance maps created using the edges and
isophotes generated in Sections 2.1 and 2.2. The edges and isophotes are each given a
priority or weight, we and wi, respectively. For every pixel p in the input image let pe
and pi be the values that correspond to p in the distance map for the edges and the
distance map for the isophotes, respectively. The value of p in the weighted distance
map is computed as D(p) = min( pe

we
, pi
wi
). For my work, edges were given a weight of

1 and isophotes were given a weight of 2. This gives isophotes a higher priority which
enhances the perceived depth. Figure 3.8 shows how different weights affect a final
distance map. In Figure 3.8d we can see that giving isophotes a weight of 5 and edges
a weight of 1 causes the map to be very skewed in the direction of the isophotes since
the pixels near to the isophotes are very dark meaning their values are small.

3.2 Offset Maps

Once we have a weighted distance map we generate an offset map following the
method used in Kim et al. [25]. An offset map consists of evenly spaced lines that
follow the edges and isophotes of an input image. The lines are given a width w0 and
are spaced at an interval of (l−w0). Following Kim et al.[25] we gave w0 a value of 1
and l a value of 6, however we later allowed for l to be specified by the user. Figure
3.9 shows how the l value affects the offset map.

For every pixel, p, we can determine if p will make up an offset line by computing
the distance between p and the nearest feature line. If p has a distance d from the
nearest feature line (calculated using the weighted distance map) we can compute the
distance ∆ between p and the previous offset lane as:

∆ = ⌈d/l⌉ · l − d

If ∆ ≤ w0 then p should be part of an offset line and it is given a value of 0.



42 Chapter 3. Stippling

(a) Input edges. (b) Input isophotes.

(c) The distance transform
of Figure 3.7a.

(d) The distance transform
of Figure 3.7b.

(e) Weighted distance
transform.

Figure 3.7: The edges and isophotes extracted from Figure 6 and the resulting distance
maps.
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(a) A sphere with an
isophote.

(b) The weighted distance
transform with edge weight
of 1 and isophote weight of
1.

(c) The weighted distance
transform with edge weight
of 1 and isophote weight of
2.

(d) The weighted distance
transform with edge weight
of 1 and isophote weight of
5.

Figure 3.8: An image and various weighted distance maps.
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Otherwise p resides in an offset lane between offset lines. In this case p is given an id
to designate which offset lane p is a part of. This is done by setting p’s value to ⌈d

l
⌉.

We also generate a strictly visual offset map for debugging purposes. In this map the
offset lines are given a value of 0 and each segment between is given a value of 255.

(a) Offset map with l = 6. (b) Offset map with l = 12. (c) Offset map with l = 24.

Figure 3.9: Offset maps generate from Figure 3.7e with different l values

3.3 Placing Dots

Given the offset and feature lines we are now ready to place and render the stipple
dots. To do so we follow the Constrained Lloyd relaxation method in Kim et al. [24].
First we randomly scatter seeds throughout the image. Then we iteratively adjust
each seed so it aligns with the center of an offset lane to maintain feature flow. Once
the seed placement is finalized we render the final dots, adjusting the size based on
the luminosity of the input photograph.

3.3.1 Initial Dot Placement

Given an offset map we want to randomly scatter dots throughout the image while
avoiding offset lines. To do so we pass over the pixels of an offset map, if the pixel is
part of an offset line we ignore it. Otherwise we generate a random number r ∈ [0, 1]
and place a seed pixel at this location if r ≤ 1

d2
where d is the distance between the

offset lines. Figure 3.10b shows the initial seeds generated from Figure 3.10a.

3.3.2 Adjusting Dots

Adjusting the dots requires creation of a Voronoi diagram. A Voronoi diagram is a
data structure that divides a plane according to the nearest neighbor rule [10]. Let S
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(a) A simple offset map. (b) The initial seed pixels.

Figure 3.10: A simple offset map and the seeds it generates.

be the set of seed pixels in the input image. For each seed pixel in the input image,
s ∈ S, we find the set of pixels Ps such that:

d(s, p) < d(s′, p) ∀ s′ ∈ S \ {s}

where d(s, p) is the Euclidean distance between s and p. That is, given a set of seed
pixels in a plane a Voronoi diagram will divide the plane into sections, Voronoi cells,
such that all pixels in a given section are closer to the seed pixel in that section than
they are to any other seed pixel in the plane. In Figure 3.11 all the blue pixels in the
upper left corner are closer to the black pixel in that cell than any other black pixel
in the image.

Figure 3.11: Voronoi diagram from Wikimedia Commons. Image reprinted under CC
BY-SA 4.0.

Once the initial dots are scattered throughout the image they are adjusted using
Lloyd relaxation as described in Kim et al. [24]. We iteratively construct a Voronoi
diagram from our seed pixels and adjust the seed pixels to be the centroids of the
Voronoi cells. In Kim et al. [24] the Voronoi diagram is generated using the Jump
Flood algorithm. In our approach we modified the Sampled Distance Transform
described in Section 3.1.1 so that each pixel records its seed pixel in addition to its
distance from said seed pixel. This modification is simple and does not affect the
time of complexity of the algorithm.
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To update the position of a seed pixel s ∈ S we compute the weighted average of
the pixels in the Voronoi cell containing s as:

c = ρ−1
∑
i

wi · xi

where xi is the i-th pixel in the cell, wi is the associated weight, and ρ =
∑

i wi is the
weight normalization term. This process moves the seed pixels towards the centers
of the offset lanes.

In the Kim et al. [24] approach the offset lines are used to constrain the Voronoi
cells so they eventually align with the offset lines. In the above formula if xi is part
of an offset line it is removed by setting wi = 0. If a Voronoi cell is divided by an
offset line there will be two non-offset line sections. Among these sections we consider
only pixels that are in the same section as the seed pixel. Recall in Section 3.2 we
tagged each non-offset line pixel with an id that corresponded to the section between
offset lines it belonged to. We use each pixel’s id to ensure that a pixel is in the same
section as its seed. If it is we assign it weight wi = 1, otherwise wi = 0. This method
moves the centroids of the Voronoi cells towards the center of the offset lanes and
ensures that centroids do not move between lanes.

Kim et al. [24] prevent the dots from looking too structural by weakening the
offset line constraints in areas far from feature lines. Instead of setting wi = 0 for all
offset lines they are given a weight proportional to their distance values:

wi = min{D(xi)/Dw, 1}

where Dw is the distance at which the offset line constraints will no longer have effect.
Kim et al. [24] set Dw = 100.

The Lloyd algorithm is iterated t1 times without offset line constraints to spread
the initial set of dots. Then the algorithm is iterated t2 times alternating the Lloyd
algorithm with and without the offset line constraints to avoid clustering while spread-
ing the dots more evenly. Kim et al. [24] set t1 = 10 and t2 = 30. Figure 3.12 shows
the seed pixels from Figure 3.10b after adjustment with offset line constraints and
after adjustment without offset line constraints. Notice how in Figure 3.12a the seeds
clearly avoid the offset lines, but they are less centered within offset lanes. In Figure
3.12b the dots are drawn closer to the offset lines but are more strictly centered in
the offset lanes.

3.4 Rendering Dots

Once the dots are adjusted the final image can be rendered. To improve image quality
we follow Kim et al. [24] and render an image that is six times bigger than the input.
The dot size at a pixel x is inversely proportional to T (x) where T is the normalized
grayscale version of the input image. The dot size is calculated as:

s(x) = smax · (1− T (x))γ
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(a) Figure 3.10b after 10 it-
erations without offset line
constraints.

(b) Figure 3.12a after 30
iterations with offset line
constraints.

Figure 3.12: A simple offset map and the seeds it generates.

where smax is the maximum possible dot size. We found that smax strongly impacted
the quality of the final image so we allowed this parameter to be specified by the user
as described in Section 4.2. Kim et al. [24] use γ to incorporate gamma correction
for tone control and set γ = 1.2 by default.





Chapter 4

Algorithmic Assessment

4.1 Evaluating NPR Renderings

As stated in Rosin et al. [34] “progress in science is best served when there are means
to evaluate and compare theories and method”. In the field of NPR, however, it is
difficult to compute a quantitative score that reflects the aesthetic qualities of the
rendered output so we must fall back to subjective evaluation. Isenberg [20] points
out that the seemingly simple question of “comparing handmade images to NPR
images” is in fact rather complicated since there is no well defined notion of what it
means to “compare” the two styles.

We could, for example, compare how well NPR programs perform on a variety of
input images, as opposed to hand-drawn renderings of similar inputs. Rosin et al.
[34] present a method for evaluating NPR techniques that uses standardized image
sets for benchmarking. They organize a diverse collection of portraits into levels of
difficulty. These sets include variation in face types, posing, emotion, accessories, as
well as range in the conditions and environments in which people are photographed.
For our work we compiled two sets of input images that correspond to level 1 and
level 2 difficulty as described in Rosin et al. [34]. These sets and the characteristics
that define them are found in Appendices C.1 and C.2

We could also compare NPR and hand-drawn images by asking how easy it is to
distinguish the two styles. Isenberg mentions a NPR “Turing test” which asks people
to distinguish a handmade rendering from an NPR one as an effective method for
comparison. Researchers have also sought to compare the two styles through statis-
tical approaches. Maciejewski et al. [26], for example, employ a statistical texture
analysis on the distribution of stipple dots by examining the gray scale textures in
NPR and hand-drawn images. They found that even NPR stippling techniques that
incorporate randomness can still be easily distinguished from hand-drawn images due
to other regularities. This type of analysis, however, is out of the scope of this the-
sis. To assess the quality of our results we examined how accurately our renderings
included the “core qualities of hedcuts” as outlined in Section 0.1.1.
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4.2 Initial Results

After completing all steps in [25] we were able to get results that resembled a stipple
drawing as seen in Figure 4.1. If we compare this rendering to the qualities outlined
in Section 0.1.1 we can see that it...

□✓ are small [7]

□✓ are portraits of people or animals

□ only include the subject’s face without the background

□✓ are two tone (black and white) images

□ use the size of stipple dots and the thickness of hatch lines to depict tone

□✓ use stipple dots to shade the subject’s face [8]

□ use hatch lines to shade the subject’s clothing

□✓ place stipples so they align with facial features [38]

□ do not place dots in the highlights of a subject’s face

□ use denser stippling for key features such as a subject’s eyes, nose, and lips

□ use strokes for hair

□ outline the subject with strokes

Figure 4.1: A photograph of Sydney Sweeny and the initial stipple rendering.
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4.2.1 Quick Improvements on Initial Results

Although these results were exciting there were immediate issues that needed to be
addressed. The first issue was that the results looked more like a comic book filter
was being applied to an image, rather than it being turned into a hedcut. This was
because the background of images would be included in the final drawing. Typical
hedcuts, however, only include the subject. To make sure the background was not
included I used Apple’s “copy subject” tool [1] to extract the subject from an image
and then pasted the subject onto a plain white background as shown in Figure 4.2c.
The final rendering in Figure 4.2d more resembles a hedcut than the rendering in
Figure 4.2b since only the subject is included. Now we can check off one more box
on our list from Section 0.1.1!

Our renderings ...

[□✓ only include the subject’s face without the background

The next improvement that needed to be made was adjusting the size of the final
dots that were placed. Stipples that were too small resulted in a rendering that was
hard to see, like the cat in Figure 4.3b. Stipples that were too large resulted in the
flow of the lines being lost, like the cat in Figure 4.3d. This led to the realization
that every step of the hedcut process, from initial edge detection to dot placement,
should be able to be parameterized.

4.2.2 Creating the Command Line Interface

To allow the user to adjust parameters in the intermediate steps of hedcut rendering I
programed a command line interface (CLI) using OpenCV. Tuning parameters during
intermediate steps generated far better looking results than hardcoding these values.
Figure 4.4 shows the improvements that can be made by adjusting the results at each
intermediate step. In Figure 4.4d the dots on the forehead follow a pattern that more
closely mimics hand-drawn hedcuts than the dots in Figure 4.4c.

The inclusion of a CLI, or any type of user interface, is unique to my thesis.
User interfaces were not present in any of the work that I surveyed. Although fully
automated hedcut rendering is impressive I found that adjusting the renderings in
intermediate steps (edge detection, offset map generation, initial seed placement, etc.)
gave the best results. Additionally my CLI gives the user a clear understanding of
the intermediate steps in this process. A video tutorial of using the CLI can be found
on my GitHub.

Appendix C.31 gives initial renderings that include these quick improvements.
With these results we can examine how well our algorithm performs on a range
of input images. In renderings of subjects with lighter skin, features such as eyes
and lips are more pronounced. In subjects with darker skin it is more difficult to
make out these features. This could come as a result of features such as eyes and
eyebrows having a similar tone to the skin. A hedcut artist, however, would be able

1A online gallery of these results can be found here.

https://github.com/AriaKillebrewBruehl/senior-thesis/tree/caboodle2#readme
https://drive.google.com/drive/folders/11JZpE7ogd3cgYaRQQPb4lDDirUO66Rdf?usp=share_link
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(a) Me in a chair with a background. (b) Rendering with the background.

(c) Just me, no chair, no painting. (d) Rendering of just the subject.

Figure 4.2: A rendering with and without the background.
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(a) My cat, Mowgli. (b) smax = 10 px. (c) smax = 20 px. (d) smax = 30 px.

Figure 4.3: Rendered stipple drawings of my cat with different maximum dot sizes.

(a) Rendering with default
parameters only.

(b) Rendering with user ad-
justments.

(c) Close up of eyes and
forehead in default para-
menter image.

(d) Close up of eyes and
forehead in user adjusted
image.

Figure 4.4: Comparison of default parameters and user adjustments.
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to properly render a darker tone by emphasizing highlights in the face and creating
contrast between eyes, eyebrows, etc. and the skin around them.

4.3 Larger Improvements on Initial Results

Even with these changes I was still unsatisfied with the results. I felt that the render-
ings looked too real and not cartoon-ish enough. In Figure 4.5, for example, Curly has
a cartoon-like quality to him. In this portrait we can see that the stipples follow long
smooth feature lines along his face and jacket. In Figure 4.6, however, the feature
lines are much less pronounced and there is not a clear flow in the dots. This happens
due to methods used for detecting feature lines and the placement of the final dots.

Figure 4.5: Glass, Randy. Curly Howard. [Pen and Ink]. Wall Street Jour-
nal. Retrieved from https://www.randyglassstudio.com/blog/2012/04/16/my-very-
first-hedcut-for-the-wall-street-journal.

4.3.1 Improving Line Drawings

In Figure 4.7 we can see that the feature lines detected by my algorithms are rather
rough. This causes the flow of features to be lost in the final rendering. If the detected
feature lines do not have a smooth flow then the offset map that is generated will not
include neat offset lanes. Without neat offset lanes the adjustment of the initial seed
pixels will not maintain feature flow. If the adjusted seeds do not follow feature flow
then the rendered dots will not align with features. Therefore to enhance feature flow
in my renderings I needed to extract feature lines such that the lines are smooth and
“cartoonish” rather than photorealistic and jagged.
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Figure 4.6: Curly Howard rendered with my program.

Figure 4.7: The edges and isophotesused to generate Figure 4.6



56 Chapter 4. Algorithmic Assessment

The importance of detecting smooth edges and isophotes is shown in Figure 4.8.
In this example I have drawn my own edges and isophotes which are more cartoonish
than those in Figure 4.7. In the final rendering we can see that the flow of the stipples
is better defined and more closely mirrors that of a hand-drawn hedcut.

Figure 4.8: Hand-drawn edges and isophotes and the rendering they produce.

Generating smooth line drawings of faces is a field of NPR in and of itself. Popular
edge detection operations such as Canny edge detection, Section 1.4.3, or the Sobel
operator, Section 1.4.2, work well for detecting edges in a photograph however the
results look rather photorealistic, as seen in Figure 4.9. An edge detection algorithm
that results in smooth and “cartoonish” feature lines will resolve these issues and
produce hedcuts that mirror those made by artists. In hand-drawn hedcuts it is clear
that the contour lines that the stipple dots follow are long, smooth arcs rather than
the shorter and more jagged lines often returned by edge detection algorithms.

The flow based line drawing method of Kang et al. [21] works well to produce
line drawings with long, sweeping curves. Kang et al. [21] develop a novel flow-
driven anisotropic filter to produce more coherent line drawings. Their work begins
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Figure 4.9: Edges detected using Sobel operator.

by applying a Sobel operator to extract an initial gradient of vectors. An edge tangent
filter is then iteratively applied to expand this gradient and extract a vector field that
follows the contours of the face. A flow-based Difference of Gaussians filter is applied
to extract the final line drawing.

This method is used by Son et al. [36] and results in hedcuts where feature lines
are longer and not jagged and where stipples align with feature lines both in the
parallel and orthogonal directions. After identifying jagged and short feature lines as
a problem in my renderings I attempted to implement Kang et al.’s [21] method for
edge detection. However, I was unable to implement this algorithm in the allotted
time. Instead I opted to make other smaller changes to the dot placement algorithms.

4.3.2 Modifying Dot Placement

When comparing my program’s hedcuts and hand-drawn hedcuts I noticed two major
differences in the placement of dots. First off, hand-drawn hedcuts typically exclude
dots from the highlights of the face, such as the forehead, cheeks, and nose. Secondly,
artists typically make dots denser around detailed features such as the eyes and less
dense in areas line the cheeks, neck, and forehead.

Excluding Dots in Highlight Regions

Excluding dots in highlight regions required an additional step in the hedcut
rendering process. Before completing step 6 in Section 0.5 we must determine which
areas of the face we want to avoid stippling. Note that these sections of the face,
forehead, cheeks, tip of the nose, etc. are very similar to the areas that were used
to find isophotes in Section 2.2. We can follow the exact same process that we do in
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Section 2.2 to generate a quantized or posterized image, Figure 4.10a. Then we can
use the process from Section 2.2 to select only the lightest regions or ‘highlights”, as
seen in Figure 4.10b. These are the regions where we will avoid placing stipples in
our final renderings.

(a) Quantized regions of
the face.

(b) The negative space
where dots won’t be placed.

Figure 4.10: Selection of regions to avoid stippling.

When placing our final dots we will modify the steps in Section 3.4. For every
stippled dot, d, we will check if d lies within a highlight region. If it does we will
remove it from our rendering. Otherwise we will render it as we normally would.
After making these changes we are able to get results like those seen in Figure 4.11.

We also improved on results by allowing for an outline to be placed around the final
rendering. This was done by thresholding the initial edges such that only the longest
lines, those that make up the outline of the subject, were left. We then combined
these lines with the final rendered stipples. Appendix C.42 shows the renderings of
our level 1 and level 2 input images with this technique. Now our results...

[□✓ do not place stipple dots in the highlights of a subject’s face

[□✓ outline the subject with strokes

This modification improved renderings of subjects with dark skin because it creates
contrast between eyes, eyebrows, lips, etc. and the skin around these features.

Modifying Dot Distribution
To make the distribution of dots denser around detailed features we need to mod-

ify the way in which seed pixels are placed. Recall that in Section 3.3.1 we randomly

2A online gallery of these results can be found here.

https://drive.google.com/drive/folders/1Ii_zFov-QY7JNuCWBb-sgo-uJOszMwHt?usp=share_link
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(a) Rendering with stipples
placed everywhere.

(b) Stipple dots excluded
from highlight regions.

Figure 4.11: Comparison of rendering with and without negative space.

scatter dots throughout the image by scanning over all pixels, p, in the image, gen-
erating a random number r, and placing a seed at p if r ≤ 1

d2
where d is the distance

between offset lines. Changing this condition will change when and where dots get
placed.

In the initial approach we will implement this modification by passing the distance
map of our input image to the placeSeeds function, rather than just the offset map.
We will create a new variable s which is calculated based on a pixel’s distance from
an offset line. As before we will place a seed pixel at p if r ≤ 1

s2
where r is the same

random number as before. I experimented with a variety of ways of calculating s and
got mixed results. Figure 4.12 shows the initial seed placement and final renderings
of various approaches, Table 4.1 shows the conditions that generated these dots

Although this method did create a greater dot density in areas closer to feature
lines I did not achieve the results I was aiming for. In Figure 4.12f, for example, the
subject’s eyes look clear and distinct. This rendering is done with Method C from
Table 4.1 which places dots very densely around feature lines. Although the eyes look
decent, other feature lines, such as the isophotes around the cheeks and neck, are
over-pronounced. Additionally the dots are too spaced out in the hair and the right
portion of the neck.

In general this approach fails because we are unable to distinguish the feature lines
that make up the eyes, eyebrows, lips, etc. from the feature lines that make up the
isophotes of the cheeks or neck. Distinguishing eyes from other feature lines would
be very difficult without the use of AI or ML and is beyond the scope of this thesis.
Our failure to write an algorithm that can distinguish different elements of the face
emphasizes the skill of hedcut artists and their understanding of the complexities of
human facial features.

To solve this issue we will modify our CLI and allow users to select regions where
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(a) Initial dots from
method A†

(b) Rendering of
Figure 4.12a

(c) Initial dots
from method B†

(d) Rendering of
Figure 4.12c

(e) Initial dots from
method C†

(f) Rendering of
Figure 4.12e

(g) Initial dots from
method D†

(h) Rendering of
Figure 4.12g

(i) Initial dots from
method E†

(j) Rendering of
Figure 4.12i

Figure 4.12: Comparison of dot distributions.
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Method Calculation of s Method Calculation of s

A
d = l

s = d + 2 * (dist / 25) B

d = l

if dist < 10 {
s = d * 0.75

} else {
s = d + 2 * (dist / 25)

}

C

d = l

if dist < 10 {
s = d * 0.25

} else {
s = d + 4* (dist / 25)

}

D

d = 2*l

if dist < 20 {
s = d * 0.5

} else {
s = d + 2 * (dist / 25)

}

E

d = 1.5 * l

if dist < 5 {
s = d * 0.5

} else if dist < 10 {
s = d * 0.75

} else {
s = d + 2 * (dist / 25)

}

Table 4.1: Various approaches for calculating s

they would like greater dot density using mouse actions. This was done following the
OpenCV tutorial by Siddharth Kherada [23]. In Figure 4.13 the user has selected the
eyes and the hair as regions for greater detail. We then use these regions to inform
offset line spacing when generating the offset map. For this work we make offset lines
in the selected regions three times as dense as the offset lines in all other regions as
seen in Figure 4.14.

When we place seed pixels we give the detailed regions three times as many pixels
as all other regions as seen in Figure 4.15. To account for the greater density of seeds
in detailed regions we must render the final stipple dots as smaller in these areas.
Suppose a pixel, p, located outside the detailed region has tone t in the input image
and will be rendered as a stipple with radius r. For some pixel p′ located within the
detailed region that also has tone t in the input image we will give p′ as radius of
r

1.75
. Then the rendered stipple at p′ will be roughly 1

3
as large the size of the stipple

at p. The decision to render stipples in detailed areas as 1
3
the size of stipples in

non-detailed areas was made through trial and error. I made an attempt to find an
exact calculation for the size of a stipple dot given its tone, t, in the input image and
the density, d of dots in that region. However I was unable to complete this work in
the allotted time. The final rendering with varying dot density is shown in Figure
4.16. Now we can check off one more box on our list from Section 0.1.1!

Our renderings ...

□✓ use denser stippling for key features such as a subject’s eyes, nose, and lips
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If we examine the results in Appendix C.53 we can see that varying stipple density
can help draw out details in key feature regions. In some instances, however, the
reduction in detail in other areas (forehead, cheeks, neck) causes the flow of stipples
and the dimension of the face to be lost. In the rendering of Obama in Figure C.7
his eyes have improved detail. It becomes difficult, however, to see a clear distinction
between his chin and neck which causes his face to look flat.

Additionally the regions that should be selected for greater detail varied between
subjects. In some instances selecting the lips improved the overall rendering and
in other cases this caused the subject to look like they had over-lined their lips in
lipstick. The issue of a certain technique working well for one subject but poorly for
another came up often in this thesis. For example placing an outline around the final
stipples, as seen in the renderings in Section C.5 and Section C.4, worked well when
there is contrast between the subject’s skin / hair and the white background. With
contrast the outline was easily detectable and gave a finished look to rendering. If
there is poor contrast between the subject’s skin / hair and the white background
(i.e. the subject has fair hair and skin) then the program does a poor job detecting
this outline. These variations in results taught me that it is extremely difficult to
create a single method (even with parameter tuning) that performs well for a diverse
range of people.

Figure 4.13: User selected details.

4.4 Suggestions for Final Approach

There are infinite ways to improve upon my program to generate results that more
closely mimic hand-drawn hedcuts. We could focus on improving feature detection
and line generation, finding the exact size to render stipples based on tone and density,

3A online gallery of these results can be found here.

https://drive.google.com/drive/folders/1-wNe-p5ZPE9LsryMsTE-EhwH2YyN7lz3?usp=share_link
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Figure 4.14: Offset lines with density variation based on user selected regions.

Figure 4.15: Initial and adjusted dots with detail selection.
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Figure 4.16: Final rendering with density variation.

rendering the dots as a more natural looking ink blot as opposed to perfect circles,
using hatch lines on clothing, fading out dots in the highlight regions rather than
abruptly stopping dot placement, etc. I believe the most reasonable improvements
would be improving feature detection and line generation, calculating exact stipple
dot size, and rendering the final dots as more natural looking ink blots. For the
former this would mean using a more cartoonish edge detection algorithm, such as
that described in Kang et al. [21]. Not only would this allow the dots to follow
smoother contour lines but it would also improve the outline that is placed around
the final rendering.

To calculate exact stipple size one could run empirical tests to compare tone
generated by stipple dots of a certain density and radius and a target grayscale tone
t ∈ [0, 1]. We can think of t as the percentage of white pixels that we need to achieve
a given shade of gray. If t = 0, a pure black image, then 0% of pixels should be white
to replicate this tone. If t = 1, pure white, then 100% of pixels should be white to
replicate this tone. If t = 0.5, a middle gray, then 50% of pixels should be white to
replicate this tone, etc. Suppose we attempted to replicate t using black stipple dots
in an image with N total pixels. To see how well we replicated t we would count the
number of while pixels in the stippled image, w, and check if w

N
≈ t.

To render more natural looking stipples we could sample a variety of hand-drawn
hedcuts and generate a dictionary with the key as dot size and the value as a list
of different hand-drawn stipples of approximately size. Then for our final rendering
we would calculate dots size, look up the list of hand-drawn stipples of this size, and
randomly select one of them as our final dot.
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4.5 Areas of Expansion for the Field of NPR

The greatest area of expansion in NPR and hedcut rendering is ensuring that algo-
rithms perform equally well on a wide variety of input images and avoid algorithmic
bias. Algorithmic bias is a “systematic deviation in algorithm output, performance,
or impact, relative to some norm or standard” [14]. These biases can be moral, sta-
tistical, or social. In the case of hedcut renderings algorithms could be statistically
biased if they meet the “core qualities of hedcuts” for light-skinned individuals but
not for those with darker skin or if programs do poorly for faces with scarring or other
abnormalities.

One may object and say that algorithms have no sense of values, that they are
purely mathematical and are inherently objective. It is important to remember that
algorithms implement values since they are optimized for performance relative to
a standard [14]. When writing my algorithms to render hedcuts I developed the
standard of “core qualities of hedcuts” and therefore had the value-laden view that
certain output that aligned with these qualities was better than output that deviated
from these standards. My selection of these core qualities allowed me to promote my
values by implementing algorithms that performed well against these standards.

Fazelpour and Danks [14] cite problem specification, data, modeling and valida-
tion, and deployment as possible ways for introducing bias into algorithms. The first
step in designing any algorithm is specifying a problem. For this thesis and other work
like it our project was: “how can we use NPR to render hedcuts”. These problems
require “consideration of values and normative standards, and thereby [provide] a ve-
hicle for the creation of biases” [14]. Biases are furthered if our problem specifications
fail to capture real-world goals. This often happens when the group of individuals
writing an algorithm are not diverse. In this thesis, for example, I was the only one
writing and testing my algorithms and I frequently used input images of myself and
therefore failed to capture the goal of rendering all peoples equally well.

The next area where biases could arise in NPR and hedcut rendering is data.
Since our algorithms are aiming to mirror the statistics in the historical data (in
this case hand-drawn hedcuts) where there are biases in the historical data there will
be biases in the algorithms 4 [14]. When looking at hand-drawn hedcuts online, I
found a disproportionately high number of hedcuts of light-skinned individuals as
compared to those with dark skin and virtually no hedcuts of individuals with facial
abnormalities. This makes it more likely that our renderings of those with dark skin
or with facial abnormalities are incorrect or do not successfully mirror the methods
an artist would use.

When modeling a dataset researchers will validate an algorithm’s performance
relative to some criteria of success [14]. As noted earlier the ways we determine this
measure of “success” can promote some values over others. In the case of NPR, where
a measure of success often comes down to a subjective opinion of whether or not the

4There have been recent efforts to detect algorithmic bias and use it as a ‘signal’ of previously
unnoticed real world biases that should be ameliorated [14]. Perhaps the failure of the WSJ’s AI
to properly render bald individuals should make us aware of biases against the community without
hair [8].
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results look “right”, validating results can become even more biased. If researchers
are more invested in producing hedcuts of those with light skin, they may be more
likely to write off poor renderings of the people with darker skin as “good enough”
while holding renderings of light-skinned people to a higher standard.

Finally biases can arise during deployment, in particular when the users’ values are
different from those that get embedded within algorithms. If users of a NPR program
to render hedcuts attempt to render images of people who do not have light skin
and the algorithms produce poor results users may avoid rendering and using these
images. As a result we have the potential of furthering media over-representations of
people with light-skin and of continuing algorithmic biases by keeping the data set of
properly rendered hedcuts small.

My work will not be used on any large scale, nor will it be used to make decisions
that greatly impact individuals lives. However my work and others like it still relate
to the issue of representation of a diverse range of people in the media so it is essential
that we avoid these biases by creating tools that render all faces equally well. One
way to avoid biases is to examine techniques artists use for making hedcuts of people
with darker skin or with facial abnormalities. Son et al. [36], for example, recognized
that hedcut artists use hatch lines rather than dots to depict a dark tone. Their work
uses a structure grid that allows for hatching in darker regions which does well on
dark skin. Bias can also be avoided by making sure programs are tested on a diverse
set of images. The sets provided by Rosin et al. [34] include a wide range of skin tones
which can be useful for exposing shortcomings in the renderings of certain inputs.
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RGB to CIEL*a*b Color
Conversion

OpenCV uses the following algorithm to convert from RGB to CIEL*a*b color space
[2]. First the RGB components are converted to floating point numbers and scaled
to fit the 0− 1 range. Then X, Y , and Z are calculatedXY

Z

←
0.412453 0.212671 0.019334
0.357580 0.715160 0.119193
0.180423 0.072169 0.950227

 ·
RG
B


X ← X

Xn

, where Xn = 0.950456

Z ← Z

Zn

, where Zn = 1.088754

L←

{
116× Y

1
3 − 16 for Y ≥ 0.008856

903.3× Y for Y ≤ 0.008856

a ← 500(f(X)− f(Y )) + delta

b ← 200(f(Y )− f(Z)) + delta

where f(t) =

{
t
1
3 for t ≥ 0.008856

7.787 · t 16
116

for t ≤ 0.008856

and delta =

{
128 for 8-bit images

0 for floating point images

This outputs 0 ≥ L ≥ 100, −127 ≥ a ≥ 127, −127 ≥ b ≥ 127. For 8-bit images
the values are converted as follows L← L× 255

100
, a← a+ 128, b← b+ 128.
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pseudocode

All code for this thesis can be found on my GitHub1.

B.1 Thresholding Edges

matrix isolate (matrix m, int label) {

for p in m {

if p.value != label {

m[p] = 0

}

}

return m

}

bool meetsThreshold(matrix m, int threshold) {

if (countNonZero(m) < threshold) {

return false

}

return true

}

matrix skeleton(matrix m) {

// convert m to binary

// skeleton image and temp image

matrix copy = m

matrix skel

matrix temp

// if the image is not totally white

if (cv:: countNonZero(copy) != (copy.size)) {

1https://github.com/AriaKillebrewBruehl/senior-thesis

https://github.com/AriaKillebrewBruehl/senior-thesis
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bool done;

do {

open(copy , temp);

bitwise_or(skel , !temp , skel);

eroded.copyTo(copy);

done = (cv:: countNonZero(copy) == 0);

} while (!done);

} else {

skel = copy

}

return skel

}

matrix threshold(matrix img , int threshold) {

// convert m to binary

// get components

matrix labels

matrix stats

matrix centroids

int numComps =

cv:: connectedComponentsWithStats(image , labels , stats ,

centroids);

map <int , bool > remove;

// for each component except the background

for row in stats {

int x = row [0]

int y = row [1]

int w = row [2]

int h = row [3]

// extract just the component from labeled image

matrix comp = labels(range(y, y+h), range(x,x+w));

// isolate component

matrix isolated = isolate(comp , i);

// get component skeleton

skel = skeleton(isolated);

remove[i] = !( meetsThreshold(skel , threshold));

}

for p in labels {
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if (remove[color]) {

labels[p] = 0;

} else {

labels[p] = 255;

}

}

return labels

}

B.2 Lower Envelope Algorithm

int f(point p) {

int value = p.value()

if value == 255 { // the pixel is unset

return INT_MAX

}

return value

}

matrix OneDimension(matrix m, function f) {

matrix final

int k = 0

array v = [0]

array z = [INT_MIN , INT_MAX]

// create the lower envelope

for p in m {

unset_p = false

while (true) {

// horizontal position of the kth parabola

int r = v[k]

if f(p) == INT_MAX {

// this pixel is unset

unset_p = true

break

}

int s = ((f(p)+p^2) -(f(r)+r^2)) / (2i-2r)

if s <= z[k] {
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// parabola at z[k] needs to be removed

v.erase(v.begin () + k)

z.erase(z.begin + k)

k - -

}

}

if unset_p {

// pixels with unset values should not be in lower

envelope

continue

}

// update lower envelope

k+ +

v[k] = i

z[k] = s

z[k + 1] = INT_MAX

}

// use lower envelope to populate distance map

k = 0

for p in matrix {

while z[k+1] < p {

k + +

}

int a = abs(i - v[k])

int b = f(v[k])

int value = a^2 + b

final[p] = value

}

return final

}

matrix TwoDimensions(matrix m, function f) {

for j in m.columns {

// extract single column from 2-D grid

matrix column = m.column(j)

matrix transformed = OneDimension(column , f)

// replace column in original array with transformed

column

transformed.column (0).copyTo(m.column(j))

}
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for i in m.rows {

// extract single row from 2-D grid

matrix row = m.row(i)

matrix transformed = OneDimension(row , f)

// replace row in original array with transformed row

transformed.row(0).copyTo(m.row(i))

}

return m

}

matrix DistanceTransform(matrix m) {

transformed = TwoDimensions(m, f)

for p in transformed {

transformed[p] = sqrt(p.value ())

}

return transformed

}





Appendix C

Results

C.1 Level 1 Input Images

Rosin et al. define level 1 input images as those that ”are straightforward to stylize,
[with] many restrictions [imposed]” [34]. Level 1 images are of adult faces with neutral
expressions in front views only. There are clean backgrounds and no ornamentation,
jewelry, or facial hair. Figure C.1 gives the level 1 input images we used for our
work. Note that these images were preprocessed slightly before rendering to remove
the background and crop them.
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Figure C.1: All images from Pexels unless otherwise noted, reprinted and altered
within Creative Commons license. From top left: cottonbro studio, Phil Nguyen,
Thomas Nguka, Vodafone x Rankin, outsidethccn dsgn, Pete Souza (Wikimedia Com-
mons, licensed under CC BY 3.0).
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C.2 Level 2 Input Images

Level 2 images contain many of the restrictions from level 1, “each image contains a
frontal, approximately upright, unoccluded view of a single face that fills most of the
image, is cropped to include minimal clothing, and does not include hands or other
body parts” [34]. Unlike level 1 images, level 2 images are allowed minimal jewelry,
gaze should be mostly forward but not exclusively, and facial expressions can show
more emotion. Figure C.2 gives the level 2 input images we used for our work. Like
the level 1 images these images were preprocessed slightly before rendering to remove
the background and crop them.

Figure C.2: All images from Pexels unless otherwise noted, reprinted and altered
within Creative Commons license. From top left: Andrea Piacquadio, Andrea Piac-
quadio, Thyrone Paas, Eman Genatilan, Kampus Production, Condé Nast (Wikime-
dia Commons licensed under CC BY 3.0).
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C.3 Initial Results

C.3.1 Level 1 Images

Figure C.3: Initial results on input images from Figure C.1.

https://drive.google.com/drive/folders/1xqU6T6c31kDE-ShpGDFnKkwUAwzmunNY?usp=share_link
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C.3.2 Level 2 Images

Figure C.4: Initial results on input images from Figure C.2.

https://drive.google.com/drive/folders/1ucLYv8irWxMmZCgt6qayMq4ArzNSnZjh?usp=share_link
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C.4 Secondary Results

C.4.1 Level 1 Images

Figure C.5: Secondary results on input images from Figure C.1.

https://drive.google.com/drive/folders/1oxGoXtzACGWEkX-7p2iGBZ_YfyJi16hv?usp=share_link


C.4. Secondary Results 81

C.4.2 Level 2 Images

Figure C.6: Secondary results on input images from Figure C.2.

https://drive.google.com/drive/folders/1tPtn9GXhUqq6Xn8YZN0I8thnWknWuspJ?usp=share_link
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C.5 Density Variation Results

C.5.1 Level 1 Images

Figure C.7: Density variation results on input images from Figure C.1.

https://drive.google.com/drive/folders/1P4Gor7tVbK7nibrmZbwlmu_vpkXQRqcC?usp=share_link
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C.5.2 Level 2 Images

Figure C.8: Density variation results on input images from Figure C.2.

https://drive.google.com/drive/folders/1IzZs8ZvD9wB9tqYuuLqRotEujzWUFeWc?usp=share_link
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